Application of the stretched exponential function to fluorescence lifetime imaging of biological tissue

نویسندگان

  • J. Siegel
  • K. C. Benny Lee
  • S.E.D. Webb
  • S. Lévêque-Fort
  • M. J. Cole
  • R. Jones
  • M. J. Lever
چکیده

The fluorescence decay in fluorescence lifetime imaging (FLIM) is typically fitted to a multi-exponential model with discrete lifetimes. The interaction between fluorophores in heterogeneous samples (e.g. biological tissue) can, however, produce complex decay characteristics that do not correspond to such models. Although they appear to provide a better fit to fluorescence decay data than the assumption of a mono-exponential decay, the assumption of multiple discrete components is essentially arbitrary and often erroneous. The stretched exponential function (StrEF) describes fluorescence decay profiles using a continuous lifetime distribution as has been reported for tryptophan, being one of the main fluorophores in tissue. We have demonstrated that this model represents our time-domain FLIM data better than multi-exponential discrete decay components, yielding excellent contrast in tissue discrimination without compromising the goodness of fit, and it significantly decreases the required processing time. In addition, the stretched exponential decay model can provide a direct measure of the sample heterogeneity and the resulting heterogeneity map can reveal subtle tissue differences that other models fail to show.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of the stretched exponential function to fluorescence lifetime imaging.

Conventional analyses of fluorescence lifetime measurements resolve the fluorescence decay profile in terms of discrete exponential components with distinct lifetimes. In complex, heterogeneous biological samples such as tissue, multi-exponential decay functions can appear to provide a better fit to fluorescence decay data than the assumption of a mono-exponential decay, but the assumption of m...

متن کامل

Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles.

We have applied fluorescence lifetime imaging (FLIM) to the autofluorescence of different kinds of biological tissue in vitro, including animal tissue sections and knee joints as well as human teeth, obtaining two-dimensional maps with functional contrast. We find that fluorescence decay profiles of biological tissue are well described by the stretched exponential function (StrEF), which can re...

متن کامل

Spectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging

Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...

متن کامل

Concentration dependence of the fluorescence decay profile in transition metal doped chalcogenide glass

In this paper we present the fluorescence decay profiles of vanadium and titanium doped gallium lanthanum sulphide (GLS) glass at various doping concentrations between 0.01 and 1% (molar). We demonstrate that below a critical doping concentration the fluorescence decay profile can be fitted with the stretched exponential function: exp[-(t/τ)], where τ is the fluorescence lifetime and β is the s...

متن کامل

FLIMX: A Software Package to Determine and Analyze the Fluorescence Lifetime in Time-Resolved Fluorescence Data from the Human Eye

Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique for measuring the in vivo autofluorescence intensity decays generated by endogenous fluorophores in the ocular fundus. Here, we present a software package called FLIM eXplorer (FLIMX) for analyzing FLIO data. Specifically, we introduce a new adaptive binning approach as an optimal tradeoff between the spatial resolution and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002